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ABSTRACT
Tire wear is a leading cause of automobile accidents globally. Be-
yond safety, tire wear affects performance and is an important
metric that decides tire replacement, one of the biggest mainte-
nance expense of the global trucking industry. We believe that it is
important to measure and monitor tire wear in all automobiles. The
current approach to measure tire wear is manual and extremely
tedious. Embedding sensor electronics in tires to measure tire wear
is challenging, given the inhospitable temperature, pressure, and
dynamics of the tire. Further, off-tire sensors placed in the well such
as laser range-finders are vulnerable to road debris that may settle
in tire grooves.

This paper presents Osprey, the first on-automobile, mmWave
sensing system that can measure accurate tire wear continuously
and is robust to road debris. Osprey’s key innovation is to leverage
existing, high-volume, automobile mmWave radar, place it in the
tire well of automobiles, and observe reflections of the radar’s signal
from the tire surface and grooves to measure tire wear, even in the
presence of debris. We achieve this through a super-resolution In-
verse Synthetic Aperture Radar algorithm that exploits the natural
rotation of the tire and improves range resolution to sub-mm. We
show how our system can eliminate debris by attaching specialized
metallic structures in the grooves that behave as spatial codes and
offer a unique signature, when coupled with the rotation of the
tire. In addition to tire wear sensing, we demonstrate the ability
to detect and locate unsafe, metallic foreign objects such as nails
lodged in the tire.

We evaluate Osprey on commercial tires mounted on a mechani-
cal, tire-rotation rig and a passenger car. We test Osprey at different
speeds, in the presence of different types of debris, different levels
of debris, on different terrains, and different levels of automobile
vibration. We achieve a median absolute tire wear error of 0.68
mm across all our experiments. Osprey also locates foreign objects
lodged in the tire with an error of 1.7 cm and detects metallic foreign
objects with an accuracy of 92%.
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1 INTRODUCTION
Tires are a pivotal part of automobiles and directly affect both their
safety and performance. According to a 2012 report from the Na-
tional Highway Traffic Safety Administration, a whopping 194,000
(5%) out of all vehicles involved in crashes between 2005-2007 en-
countered problems with their tires [9]. In spite of introducing Tire
Pressure Monitoring Systems (TPMS) in all vehicles in 2007 (as per
FMVSS No. 138 [47]), tire-related accidents are still prevalent even
today. This is partly because a TPMS is effective only in sensing
issues related to tire pressure. Other important issues such as tire
wear / tread degradation, cited as one of the leading causes of tire-
related crashes [9], go unnoticed. Beyond safety, tread degradation
is an important metric that decides tire replacement, the second
biggest maintenance expense (after fuel) of the US$58 billion global
trucking industry [16], which presently relies on extremely coarse
manufacturer-provided heuristics to model when to replace or re-
tread tires [2]. It is thus imperative to measure and monitor tire
wear / tread depth in all automobiles, just as we monitor pressure
using TPMS today.

Past efforts to design electronic sensors that automatically and
always sense tread depth from within the tire [5] are expensive
to manufacture and maintain over a tire’s life. Such a sensor must
necessarily survive automotive grade temperatures ranging from
−35◦C to 85◦C and cope with pressures of 2.75 bar. Making the
environment more challenging is the extreme friction at the sur-
face, mobility of the vehicle, various road terrains, and varying
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Tire Wear / Tread Depth = dgroove - dtread

dtread dgroove
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Figure 1: Osprey: A mmWave radar is placed in the tire well
to image the tire and estimate the tire wear while filtering
out the effects of debris.

weather conditions. For this reason, much of the state-of-the-art
estimates tread depth indirectly using TPMS readings [11] or other
sensors mounted on the inner lining [37], (see Fig. 2) – all of which
are far away from the actual tread and therefore prone to large
errors. Even off-tire solutions such as laser rangefinders in the tire
well experience errors due to debris accumulation and varying tire
pressure [42]. This motivates the need for continuous sensing of
accurate tire tread depth without embedding electronics within the
tire.

We propose Osprey1, the first debris-resilient mmWave sensor
system design to measure tread depth without embedding any elec-
tronics within the tire. This paper is a joint work with Bridgestone,
a leading global tire manufacturing company whose expertise we
utilized in developing and evaluating our system. We build our
design on top of a commercial, automotive, mmWave radar (TI
AWR1642BOOST) which is becoming more pervasive in automo-
biles for the purposes of collision detection and avoidance. We place
this radar in the well of the tire, as shown in Fig. 1. Our approach
then draws inspiration from traditional radar imaging and relies
on extracting precise range locations of the surface of the tire and
that of thin strips of metal placed in the grooves of the tire. With
precise range locations of these two surfaces, tread depth can be
estimated as the difference between the two. The rest of this paper
describes our solutions to two key challenges in making our design
practical:
(1) Insufficient Range Resolution: With a 4 GHz bandwidth, the
range resolution that state-of-the-art automotive mmWave radars
provide is 3.75 cm (𝑐/2𝐵). However, tread depths vary at signifi-
cantly finer granularities between 2 - 20 mm. As a result, the reflec-
tions from both the surface and the groove of the tire are below the
best resolution of mmWave radars and thus indistinguishable. To
mitigate this challenge, we pose this range resolution problem as a
parametric estimation problem to resolve the range bins by building
a super-resolution algorithm that builds on Inverse Synthetic Aper-
ture Radar (ISAR). Our approach effectively exploits the rotation
of the tire to view the same segment of the groove and tire surface
from different perspectives. Unlike traditional SAR in the far-field
terrain imaging context, we model the rotating nature of tire where
segments of the tire appear, disappear, and then re-appear into
the view. In addition, we overcome unique challenges owing to the
proximity of the tire, misalignment, uneven rotation, and vibrations.

1Osprey is a fish-eating bird that can accurately gauge the depth of prey underwater,
overcoming the effects of refraction.

Sec. 5 describes how our approach resolves millimeter differences
in tread depth.
(2) Resilience to Debris: While sensing to recover the range of
the tread and groove might seem enough to solve the problem of
tread depth, small pieces of debris embedded in the groove of the
tire can impede these measurements. This might lead to incorrect
characterization of tread depth. To deal with this challenge, we
carefully craft the layout of the metallic strips in the groove along
specific coded patterns. We choose metal to design these patterns
since they provide strong reflections capable of penetrating debris.
Further, we note that today’s tire manufacturing processes are
already tuned to add metallic strips to tires to disperse static charge.
Our radar’s received signal from the groove therefore includes both
the specially designed metallic spatial codes as well as debris settled
within.We then correlate the received signal with the spatial code to
isolate the signal from the groove’s surface and eliminate any effect
of debris. Our specific design is inspired by optical orthogonal codes,
used in optics to allow for correlating patterns on ISAR images.
Sec. 6 describes how to design spatial codes that allow for efficient
elimination of the impact of debris within the small surface area
available within a tire’s groove.
Sensing Foreign Objects: Beyond tread depth, our approach is
designed to be robust and to detect and locate foreign objects in the
tire. Foreign objects like pieces of wood, metal, stone, etc. lodged
on the surface or in the groove of the tire are a major cause of tire
damage that can drastically reduce the tire’s lifetime. We present a
foreign object localization system that can accurately determine the
location of the object and notify the user in real time. Our approach
processes the output of the Inverse Synthetic Aperture Radar algo-
rithm, which appears akin to X-ray images showing components
lodged within the tire. We receive multiple such images as the tire
rotates over time. We then stitch these images together to generate
a continuous image of the tire and use the known pattern of metal
strips in the grooves to determine the exact location of the foreign
object. We then use different machine learning algorithms to distin-
guish between harmful (metallic) and non-harmful objects lodged
in the tire, chosen among common sources of debris dangerous to
a tire. Sec. 7 describes our method for characterizing the kind of
object present in the groove.
Limitations: We note the following important limitations of our
system (see Sec. 10): (1) Our evaluation shows Osprey operating
at tire speeds up to 5.45 kmph. We note that tire abrasion occurs
at relatively slow timescales, meaning that periodic measurements
when vehicles slow down are already very informative. (2) Our
system makes use of the tire geometry and needs to be notified
when tires are changed to download expected tire geometry from
the manufacturer. (3) The cost of AWR1642 radar IC, one per per
tire well, is <$40. While this is not insignificant compared to cost
of passenger car tires, we note that this cost is insignificant for ex-
pensive tires – buses, trucks, agricultural, off the road vehicles, and
for trucking companies – where tire replacement alerts outvalue
system cost [16].

We implement Osprey on a 77 GHz mmWave automotive radar.
We evaluate our system on Falken Eurowinter HS449 and Bridge-
stone Blizzak LM001 tires, which differ in terms of tread patterns.
We evaluate our system on moving a passenger car as well as on a
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Figure 2: Depicts different components of a tire – distinct
tread patterns, grooves running along the circumference,
steel belts, nylon belts, etc. [50]

mechanical tire rotation rig. We rotate tires at speeds of up to 5.45
kmph. Our evaluation demonstrates:

• A median tread depth estimation error of 0.68 millimeters
across all experiments.

• A median error of 1.7 cm in the location of foreign objects.
• An accuracy of 92% in the type of foreign object classified
between metal and non-metal.

Contributions: Our main contributions include:
• A super-resolution Inverse Synthetic Aperture Radar algo-
rithm that exploits the natural rotation of the tire to 3D image
its surface at sub-millimeter accuracy, amidst tire dynamics.

• A sub-millimeter accurate tread-depth sensing solution in
the presence of debris using spatial codes composed of metal-
lic strips in the groove.

• A solution to detect the location and type of foreign object
lodged in the tire.

2 A PRIMER ON TIRES
This section provides an overview of tire fundamentals needed to
understand our problem domain and define tread depth.
What is Tread Depth?: Fig. 2 shows the cross section of a typical
tire. The prominent patterns etched on the rubber provide trac-
tion. The shallow portion in these patterns are grooves, and rubber
portions which touch the road are treads. Tread depth, a measure
of tire wear, is simply the distance between tread’s surface and
groove. In general, greater tread depth provides greater traction.
This is why heavy-load truck and agricultural tires have greater
tread depth than car tires.
Why does Tread Wear matter?: During the lifetime of a tire,
tread wears down naturally and tread depth decreases. Natural
wear is a slow process. Tires are rated to last for 20-25 thousand
kilometers. For trucks which drive 100s of kilometers each day, it
is useful for the truck fleet management to track changes in tread
depth continuously and plan the maintenance costs of retreading.
It also opens up opportunities like creating an economically vi-
able leasing model for trucks. For other vehicles like passenger
cars which travel around 20 km per day, measuring fine-grained
changes due to natural wear continuously seems unnecessary. How-
ever, there are other factors which lead to sudden or faster wear –
misalignment of wheels, improper pressure, varying load on the
vehicle, characteristic driving traits of drivers, and many more. In-
sufficient tread depth leads to the tire not being able to grip the

Figure 3: Why mmWave: A design space exploration.

road surface properly, and the driver can lose control of the vehicle
due to loss of braking efficiency or hydroplaning. As a safety pre-
caution, the Federal Motor Carrier Safety Administration (FMSCA)
in the US defines a legal minimum tread depth requirement of 3.2
mm (4/32") for steer tires of trucks and buses and 1.6 mm (2/32")
for other tires and vehicles. It would therefore be convenient to
monitor tread depth continuously so that sudden or faster wear can
be tracked and accidents can be avoided. To help put the minimum
tread depth numbers in perspective, steer tires of trucks start with
about 17.5 mm (22/32") of tread depth, and passenger tires have an
initial tread depth of about 9.5 mm (12/32"). This means that a tread
depth measuring system will have to track changes at the level of a
few millimeters! On top of this, a continuous tread depth measuring
system should be designed with at least the two minimum require-
ments for on-road robustness - be immune to debris accumulating
in the groove, and be able to measure as tires are rotating.
Tire Sensors: Ordinary sensors such as TPMS are mounted on the
rim of the wheel / inner lining of tires. RFID tags used for inventory
management of tires are embedded in the rubber along the sidewall,
which makes them easy to scan. Embedding sensors in the tread
is challenging, owing to high temperatures (about 85◦C), pressure
(about 2.75 bar), and extreme dynamics. In-tread sensors which can
withstand these conditions (see Sec. 10) are expensive to embed as
they require changes to existing manufacturing lines.
A tire is not all rubber: A tire is a highly engineered system,
mostly but not entirely made of rubber. Just below the groove,
layered steel belts (or sometimes nylon) run throughout the cir-
cumference of the tire. Their intended purpose is to reinforce the
structural strength of the tread. In the absence of this structure,
a tire would heavily deflect under load and inflate uncontrollably
akin to a balloon when air pressure is applied. We use the metal-
compatibility of tires to our advantage in our system design, as we
show in Sec. 6.

3 WHY MMWAVE?
Our choice of mmWave radars for tire depth sensing stemmed from
a deep design space exploration of different choices available, with
close consultation with our tire manufacturing industry collabora-
tor.
The Design Space: Fig. 3 depicts the design space of feasible
approaches to tire tread depth sensing. Broadly, the problem of
tread depth sensing has three approaches: (1) Human effort, e.g.
measurement with a penny; (2) In-tire and indirect sensors, which
lead to manufacturing and robustness problems; or (3) Off-tire
sensors, typically vulnerable to debris. Sec. 11 elaborates on prior
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work in each of these spaces and their known weaknesses. Among
the three classes, we choose the off-tire sensor approach given that
we seek a robust solution that requires minimal human intervention
and no change to the tire-manufacturing process. Current solutions
in the off-tire sensor space use visible light (e.g. LIDAR [42]) which
is vulnerable to debris or X-ray imaging in factories [18] that are
unsafe to use on the road.

Our Choice: We therefore chose an RF-based solution given
that radio signals are known to penetrate through debris. Compared
with commonly used RF solutions such as RFID andWiFi, mmWave
frequencies provide one of the widest bandwidths among all radio
systems. We specifically chose mmWave RF frequencies due to
this high available bandwidth, keeping in mind the sub-millimeter
resolution requirement of tread depth sensing. Further, mmWave
radars are commonplace in the automotive industry as collision
radars and are already optimized for vehicular mounting. Yet, the
high-bandwidth of mmWave radars – about 4 GHz – while high
relative to sub-6 GHz bands, still offers only a distance resolution
of 3.75 cm. While this is sufficient for collision sensing, it is well
over an order of magnitude poorer than our desired tread-depth
resolution. The rest of this paper discusses the various challenges
and opportunities in circumventing this resolution limit.

4 SYSTEM OVERVIEW
In this section, we present a high level overview of Osprey and
present the organization of the rest of this paper. Fig. 4 depicts
the high level architecture of our system. We mount a commodity
automotive mmWave radar in the well of a tire with its antenna
facing the tire. Our objective is to create a 3D depth image of the
surface of the tire and grooves , while filtering out any impact of
debris. We then measure tread depth simply as the difference in
distance between the tire surface and groove. We further classify
the filtered-out debris among different categories and map out
their specific locations on the groove, particularly for debris of
importance (e.g. metal lodged in groove). The rest of this paper
describes three important challenges in achieving this design (Sec. 5-
7), a discussion of limitations (Sec. 10), as well as a comprehensive
system evaluation (Sec. 8-9):
(1) Super-Resolution Tire Surface Imaging: Sec. 5 describes
how one can obtain the tire surface image as shown in Fig. 4 to
study wear. Our approach at a high level uses Inverse Synthetic
Aperture Radar (ISAR) that effectively exploits movement of the tire
to improve spatial resolution. We further develop super-resolution
algorithms that are specifically optimized along the depth axis.
We further tackle important challenges from tire deflections and
vibrations which can impact the performance of ISAR.
(2) Tread Depth Amidst Debris: Next, Sec. 6 describes how one
can filter out debris that may create spurious peaks in Fig. 4, leading
to misleading depth of the tread groove. To this end, Osprey places
metallic strips in the groove along specific patterns – effectively,
spatial codes. While the groove’s peaks will match this code, debris
(on average) will not. We describe our choice of design of these
spatial codes as well as how they remain robust to different kinds
of debris.
(3) Sensing Foreign Objects: Finally, Sec. 7 discusses locating
and identifying the nature of tire debris. Our approach to locating
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Figure 4: Osprey’s Architecture: (1) Generates a super-
resolution ISAR tire image (2) Filters out debris using coding
to obtain tread depth (3) Detects and locates foreign objects.

debris relies on how close their peaks are relative to the underlying
metallic spatial codes on the groove which act as reference. We
further devise features from the debris that help us uniquely map
them to different types of debris.

5 TIRE SURFACE IMAGING
In this section, we aim to measure the depth of different points
along the surface of the tire from the mmWave radar mounted
along the tire well (see Fig. 1). Recall that the difference between
this quantity and the depth of grooves along the tire results in the
tread depth – our main quantity of interest. Note that the spacing
between the tire surface and radar can change for two reasons: (1)
Wear and tear of the tire; (2) Due to tire suspension, e.g. weight
of load or dynamics of the road such as speed bumps. Hence, it is
important to measure both the distance of the tire’s surface and
groove relative to the radar – i.e., measuring the former alone
does not suffice. This section specifically focuses on capturing the
depth of the exterior surface alone, and we will describe the unique
challenges in determining the depth of the grooves later in Sec. 6.
Osprey’s Approach: To address this challenge, Osprey develops
a super-resolution algorithm that measures the depth of the tire
surface at sub-mm accuracy. We do this by exploiting the mobil-
ity of the tire – particularly its rotation, to our advantage. Our
specific approach is to build an Inverse Synthetic Aperture Radar
(ISAR) solution for the tire context. In traditional radar systems
used for military and scientific applications, ISAR integrates mul-
tiple received signals from a target moving at a known speed (e.g.
an aircraft) to a static object (e.g. ground radar) to localize it at
fine precision, significantly higher than what the bandwidth of
the radar would allow. In an analogous fashion, our approach inte-
grates signal reflections from the same point as the tire rotates to
improve our precision of its depth relative to the radar. The rest of
this section describes our solution to two key challenges unique to
the tire context: (1) First, we need mechanisms to model the rota-
tion of the tire, including dynamics of the tire due to vibration and
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Figure 5: Osprey’s ISAR uses a cylindrical coordinate system
centered at the center of tire. Any point is represented as
(𝑟, 𝜙, 𝑧) - 𝑟 is radius, 𝜙 is azimuth, 𝑧 is z-coordinate. mmWave
radar is at (𝐷, 0, 0). The difference between the radius of sur-
face and groove is essentially the tread depth.

misalignment; (2) Second, one would need to isolate measurements
from the tire’s surface from all other sources of reflection, such as
the well of the tire.

5.1 Inverse Synthetic Aperture on a Tire
Osprey’s ISAR algorithm leverages tire rotation with respect to
the mmWave radar placed in the tire well. For now, we assume
that the precise angle of rotation of the tire is known at any time.
Sec. 6.1 details our approach to estimate this by attaching known
tire-compatible artifacts to the groove. However, we note that
tire orientation can also be gleaned out-of-band through an en-
coder [36], an inertial measurement unit [34] placed on the axle,
or from motor feedback [8]. We also assume that the prior tread
pattern and tire model are known up front, for instance, specified
at tire installation. As a result, the only unknown that needs to be
captured is the depth of the tire’s surface relative to the radar.
Challenges: A unique challenge in formulating Osprey’s ISAR
optimization is to model the effect of the rotation of the tire on the
received signals at the radar. Specifically, note that the received
signal at the radar is the sum of reflected signals that impinge on
multiple points along the surface of the tire. As the tire rotates,
these points rotate as well at a rate dictated by the tire’s speed.
Further, some points progressively disappear from view as they
move beyond the field-of-view of the radar, while others appear
into view at the other end of the tire. Our formulation of ISAR
therefore needs to model tire surface trajectories to isolate signals
received from across points on the surface.
ISAR Formulation: Our mathematical formulation of ISAR mod-
els the journey of an imaginary point on the surface of the tire, to
ascertain its depth – illustrated in Fig. 5. For mathematical conve-
nience given that the tire is a rotating body, we choose cylindrical
coordinates to express this point, with the origin defined as the
center of the tire. Let (𝑟, 𝜙, 𝑧) represent the cylindrical coordinates
of a point, 𝑋 , in 3D space on the surface of a tire. Let 𝜙 denote the
azimuthal angle that changes with the rotation of the tire about the
z-axis. We assume that the mmWave radar is located at a distance
𝐷 along the positive 𝑥 axis (i.e. at (𝐷, 0, 0)). Then by definition, 𝑟
directly relates to tread depth – any wear of the tread automatically
results in an equal reduction in 𝑟 . Our objective is to therefore
estimate 𝑟 .

Next, we trace the journey of our imaginary point that traverses
(𝑟, 𝜙 (𝑡), 𝑧) over time 𝑡 , where 𝜙 (𝑡) denotes the changing azimuth
as the wheel spins. Let 𝑑 (𝑡) denote the distance between the points
(𝑟, 𝜙 (𝑡), 𝑧) and (𝐷, 0, 0). Then it is clear that the wireless channel
contribution at any time over the trajectory of the point 𝑋 , ℎ𝑋 (𝑡)
due to the reflection of the signal from the radar off the point is [44]:

ℎ𝑋 (𝑡) = 1
2𝑑 (𝑡) 𝑒

−𝑗4𝜋𝑑 (𝑡 )/𝜆

Where 𝜆 denotes the wavelength. Our algorithm to isolate the
signal along any point located at (𝑟, 𝜙 (0), 𝑧) at 𝑡 = 0 therefore
actively projects the received channel along ℎ𝑋 (𝑡). We specifically
run a modified Bartlett algorithm for Inverse Synthetic Aperture
Radar, akin to an inverse spatial Fourier transform, that accounts for
the tire’s rotation. Specifically, we write the power of the received
signal reflected off the point (𝑟, 𝜙 (0), 𝑧) on the tire as:

𝑃 (𝑟, 𝜙 (0), 𝑧) =
∑
𝑡

ℎ(𝑡)𝑒+𝑗4𝜋𝑑 (𝑡 )/𝜆 (1)

Where ℎ(𝑡) is the wireless channel read at time 𝑡 .
Note that mmWave radars often have multiple antenna elements,

e.g. eight in the radar used in our experiments. In such cases, the
above process needs to be co-optimized across antenna elements.
We lay the multiple antennas along the z-axis. Similar to the above
process, we create expected wireless channels of reflection from a
point for each antenna and then sum over the projection across all
antennas in addition to summing across time.

Our choice of Bartlett, as opposed to other antenna algorithms
such as MUSIC [52] or ESPRIT [32], stems from the non-uniformity
of the rotation of the tire, where tires often rotate at uneven speeds
or packet samples from the mmWave radar are obtained at unequal
times. This may cause spurious peaks in algorithms such as MUSIC
or ESPRIT that are best suited to uniform arrays [39], whereas
Bartlett remains relatively more robust.

5.2 Resilience to Tire Dynamics
The above formulation assumes perfect awareness of the rotational
dynamics of a tire over time. However, several dynamics of the tire
maymake its movements irregular and often noisy or unpredictable.
Our approach needs to be resilient to tire dynamics. We detail how
our approach handles three classes of common tire dynamics:
Suspension: Vehicles are equipped with suspension to provide
resilience to changes in road topography, such as speed bumps,
gravel, potholes, etc. When a vehicle drives over, say, a speedbump,
the wheel traces the contours of the speedbump, while the well
of the tire may follow the contour significantly less tightly due
to suspension. For Osprey, this means that the distance between
the radar and tire surface can change due to both the dynamics of
suspension and the rotation of the tire. Neglecting tire suspension
can introduce a fixed error Δ in our estimate of the distance of the
tire surface relative to the radar – corresponding to the state of
vehicle suspension. Fortunately, this fixed error does not meaning-
fully impact our effective estimate of tread depth. This is because
our estimate of the depth of the groove also experiences the exact
same error Δ owing to suspension. And, tread depth which is the
relative distance between tread and groove does not change with
suspension effects. Hence, the difference in distance between the
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Figure 6: An ISAR image reveals the tire tread pattern.

tire surface and groove is independent of Δ, that is, Osprey’s tread
depth estimate remains unaffected by suspension.
Vibrations: Vehicles routinely experience vibrations due to the
movement of the motor. Unfortunately, these vibrations are noisy
and therefore extremely challenging to predict and directly intro-
duce noise to our surface depth estimates. Worse, different parts of
the vehicle may vibrate differently – for instance, the (metallic) well
of the tire typically vibrates at a higher amplitude compared to the
(mostly rubber) tire itself. Osprey limits the impact of vibrations
in two ways: (1) First, we place the radar itself at the centroid of
the well lodged firmly with the body of the vehicle. This limits
unnecessary extra mechanical vibrations that loosely fitted fixtures
experience; (2) Second, we average measurements across several
packets and drop outliers (∼ 1 % of measurements) to discount spu-
rious readings due to vibrations. Our evaluation in Sec. 9 measures
Osprey’s accuracy on the well of a vehicle to study the impact of
vibrations.
Misalignment: While our model assumes that 𝑧 (the z-coordinate)
of any point on the tire’s surface is fixed as the tire rotates about the
z-axis, misalignment of the tire can cause (mild) variations in 𝑧 as
the tire rotates. If this is not accounted for, the tire geometry sensed
experiences unnatural spatial distortions, skewing the boundary of
the tire surface in accordance with the tire misalignment. Osprey
accounts for tire misalignment by actively leveraging this distortion.
Specifically, it models known features on the tire surface, such as
its boundaries, and measures their skew along the 𝑧 axis. It then
performs a cubic-spline interpolation of this skew to estimate the
corresponding offset in 𝑧 as a function of time. Osprey then reruns
its algorithm with the new estimates of 𝑧 over time, until the skew
along 𝑧 in its ISAR output disappears.

Accentuating all the above dynamics are tire speed and signal
multipath from the vehicle itself and its surroundings. We deal with
these challenges explicitly in the next section.

5.3 Isolating Tire Surface
In this section, we explore ways to isolate signals from the surface
of the tire from other sources of reflected signals – such as signals
from the well of the tire, metallic parts of the car, or even objects
along the street. Such reflectors can cause spurious peaks to appear
within the measured ISAR image obtained from Eqn. 1. Osprey’s

approach to de-cluttering the surface from other objects relies on
two solutions: tire pattern recognition and background subtraction.
Tire Pattern Recognition: Our approach to focus on the surface
of the tire relies on the fact that we know the precise tread pattern
of the tire based on its manufacturing specifications. This pattern
inevitably manifests itself in the ISAR image, where grooves and
bumps on the tire’s surface produce variations along the radial and
azimuthal axes (𝑟 and 𝜙). Our experimental results show that these
patterns manifest across a wide-range of tire patterns. Fig. 6 depicts
a candidate tire tread pattern and its corresponding ISAR image
– a surface plot depicting 𝑃 (𝑟, 𝜙, 𝑧) (from Eqn. 1), where 𝜙 and 𝑟

denote the 𝑥 and 𝑦 axis respectively and pixel intensity denotes
the value of 𝑃 (𝑟, 𝜙, 𝑧). We note that the tire patterns closely align
with corresponding ISAR images. As a result, Osprey can effectively
identify points on the surface of the tire by correlating the ISAR
image with this known pattern.
Impact of Tire Speed: An important effect that needs to be ac-
counted for in designing our approach to correlation is the impact
of tire speed. While our ISAR formulation explicitly accounts for
tire speed in the evolution of 𝜙 (𝑡), small errors can produce distor-
tions in the ISAR image. In particular, two effects are prominent: (1)
The images of the tread may be marginally stretched or squeezed
based on whether the tire speed was over- or under-estimated; (2)
Sharp edges along the tread could appear unduly smooth owing to
vibrations and tire dynamics. Osprey explicitly accounts for these
effects by applying a spatial smoothing Gaussian function (whose
width is determined by the resolution of the image) on the known
tread pattern. Further, rather than applying a standard matched
filter, Osprey applies a 2D version of Dynamic Time Warping [31]
used in speech and image processing to correct for minute spatial
stretches and squeezes of the signal received from the tire. In effect,
these allow Osprey to spatially map the precise locations of the
surface of the tire between the grooves. Osprey then averages the
depth information (defined by 𝑟 ) obtained at these locations across
rotations of the tires to report 𝑟tread, the location of tread surface.
Background Subtraction: An additional signal processing tool
that Osprey employs to combat signal multipath from spurious
objects around the tire is background subtraction [55]. Osprey
subtracts out received signals along two different time windows to
preserve dynamic artifacts (e.g. the tire) while canceling out static
objects (e.g. the well of the tire). This effectively removes much
of the static (relative to the car) objects surrounding the tire such
as the well of the tire and the surface of the car itself – modulo
vibrations, as we discussed in Sec. 5.1. Background subtraction
when applied to two adjacent ISAR images across time can also
reveal another effect – spurious objects that appear on the surface
of the tire, such as debris (e.g. mud picked up by the tire) that soon
after dissipates due to abrasion. Osprey can effectively be resilient
to such distortions to surface depth measurements by identifying
and rejecting these outliers.

An important point to discuss is the difference in the effect of
debris on the tire surface versus the groove. While debris on the
tread surface inevitably is worn away due to abrasion resulting in
(at worst) local and short-term uncertainty, debris on the groove of
the tire can settle in and create long-term errors in measurement.
The next section explicitly discusses our solution to this problem.



Osprey: A mmWave Approach to Tire Wear Sensing MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

6 DEBRIS-RESILIENT TREAD SENSING
This section studies Osprey’s approach to sensing the precise depth
of the grooves of a tire. Coupled with the estimate of the depth of the
tire surface in Sec. 5, this would allow Osprey to fully estimate tread
depth. The primary challenge is the presence of debris (e.g. mud,
stones, soil, etc.) within the grooves, which may cause spurious
reflections of the mmWave radar signal that completely mask the
true reflected signal from the tire grooves.

Osprey addresses this challenge by developing specializedmmWave
compatible metallic codes embedded in the tire groove. We leverage
the fact that mmWave reflects off metallic surfaces with a signifi-
cantly higher power compared to other surfaces (e.g. mud, rubber,
etc.), a property validated by prior work [15, 24] and our own results
(see Fig. 11 in Sec. 9.1). We place thin and tiny metallic strips of
Aluminum that are inexpensive and highly reflective for mmWave
in the tire’s groove (see Fig. 7). We place these strips in 2 dimensions
resembling barcodes with a pre-designed and well-known layout
akin to a spatial code. These codes serve twin purposes: (1) First,
we can modify our algorithm to explicitly look for reflections from
a specific code in a specific groove within the reflected signal from
the tire. This would help isolate the signal from the groove of the
tire from all other reflections (e.g. debris within the groove), both
due to high reflectivity of the metal and the coding gain of the spa-
tial code. (2) Second, we can reuse these metallic tire codes placed
at known groove locations as encoders to accurately measure (with
mm-accuracy), the current azimuth 𝜙 (𝑡) (i.e. rotational angle) of
the tire. In other words, metallic codes can free us from needing
out-of-band encoders to find the rotational angle of the tire, needed
for Osprey’s ISAR algorithm in Sec. 5.1.

The rest of this section explores the design space of metallic
codes. First, we describe our choice of tire code that accounts for
the limited space available within the groove, resilience to error,
and interference. Second, we present our algorithm to efficiently
decode the metallic codes and estimate tread depth.

6.1 Design of Tire Codes
In designing metallic codes in the tire groove, our objective is to
determine the depth of the groove with high accuracy, despite
the limited area of the groove itself and the potential presence of
debris. In exploring the design space of spatial codes, we pose three
important requirements unique to the tire context: (1) First, we need
a solution that is resilient to debris by ensuring that the code reflects
mmWave radiation strongly; (2) Second, we need to be resilient to
errors that stem from foreign objects or debris lodged in the groove;
(3) Third, we need to be able to decode and disambiguate signals
from codes along adjacent grooves, the reflected signals from which
may interfere at the radar. We describe how our design meets each
of these requirements below.
Debris-Resilient CodeModulation: Osprey’s spatial code needs
a modulation that maps zeros and ones to metallic structures that
maximizes resilience to debris. Intuitively, we need to select modu-
lations that maximize the surface area of thin metallic strips needed
to ensure best resilience to debris. Our solution is inspired by tradi-
tional 1D barcodes that use pulse-width modulation [27] for similar
reasons: to maximize the amount of ink clearly observable and
resolvable by a camera. Osprey uses pulse width modulation, map-
ping zeros and ones to metallic strips of different widths. We choose
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Figure 7: Osprey combats debris by laying Aluminium strips
in the groove, which emulate a spatial code. Different
grooves have different coded bit patterns encoded using
pulse width modulation.

widths of 4 and 2 cm dictated by the resolution of the mmWave
radar. We orient these tags along the azimuth axis, which is our
axis of maximum spatial resolution owing to ISAR.

We pack as many bits as possible within the available surface
area of the groove. Our design largely uses one-dimensional codes,
given that most grooves on tires are relatively narrow. However,
should larger groves be available (for e.g. on certain large truck
or bus tires), we can lay out the patterns along two dimensions.
However, these patterns need to be spaced based on the resolution
along the azimuthal angle (about 3 mm in our implementation).
Hence, our current implementation in Sec. 8 uses 1D codes.

We choose Aluminum foils with a thickness of 274 microns, to
ensure minimal impact on tire dynamics while still providing strong
surface reflections to the mmWave radar. We note that today’s tire
manufacturing processes already insert metallic structures within
the tire for structural stability. Our design of laying Aluminium
foils in the groove introduces minimal disruption to existing tire
manufacturing pipelines.
Resilience to Bit Errors and Code Collisions: Next, our system
needs to be resilient to bit errors as well as collisions between codes
from adjacent grooves. At first blush, one may consider using a
family of orthogonal codes from traditional CDMAcodes (e.g.Walsh
codes [43], Gold codes [45], etc.) that are known to be resilient
to collisions and have excellent resilience to bit flips. However,
these codes assume that bits are encoded into polar modulations
where bits are encoded as −1 and 1. In the case of spatial codes,
however, bits are encoded by different widths of the metallic strip
for pulse width modulation. In other words, bits are encoded in the
relative amplitude of the signals reflected off the code rather than
the phase or sign. Said differently, Osprey needs orthogonal CDMA
codes that allow for only positive (unipolar) modulations where
bits are modulated as (0, 1) instead of (−1, 1). To illustrate why this
difference in polarity of codes is important, note that (−1, 1) and
(1, 1) are orthogonal polar codes of length two (i.e. their vector dot
product is zero), while their unipolar twins (0, 1) and (1, 1) are not.

To address this challenge, Osprey borrows from optics where,
similar to our context, signals add up in amplitude. Osprey specif-
ically relies on Optical Orthogonal codes (OOC) [10], a family of
coded bits of different lengths that are designed to have high auto-
correlation and poor cross-correlation. Osprey specifically chooses
OOC to maximize the amount of metal and remain within the space
constraints of common grooves. We further note that our approach
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Figure 8: Osprey was evaluated on a tire rotation rig. The
tire, with one bit of Aluminium strip embedded in the cen-
tral groove, is mounted on a turntable controlled by stepper
motors. mmWave radar is mounted at a distance on a table,
similar to the tirewell, and streams I/Q samples to computer.

is compatible with pulse width modulation, given that it effectively
results in marked differences in total amplitude reflected from zero
and one bits. We note that our choice of codes simultaneously
achieves two purposes: (1) OOC have poor cross-correlation and
therefore are highly resilient to collisions when codes across adja-
cent grooves need to be disambiguated; (2) OOCs are also inherently
resilient to bit flips showing high robustness to erroneous bits as
demonstrated in [10].

6.2 Decoding of Tire Codes
Our approach to decoding tire codes correlates the codes with
different possible known code sequences in order to detect the
presence of a specific groove. This directly serves as an encoder as
well. The main challenge, however, is to effectively measure the
precise depth of the groove, given the known code pattern that is
present. Further, this code pattern could experience distortions (e.g.
smoothing) owing to the limited resolution of the mmWave radar
and the dynamics of tire rotation.

Osprey explicitly accounts for this calibration by developing
a model 𝑀(𝑟,𝜙 (𝑡 ),𝑧) (𝐶) that captures the expected wireless chan-
nels from the code 𝐶 accounting for the expected distortion, when
moving along the trajectory (𝑟, 𝜙 (𝑡), 𝑧). We then pose a maximum
likelihood problem that determines the true depth of the groove
given by 𝑟 by correlating this model with the received channels.
Specifically, we estimate the groove’s coordinates as:

𝑟groove = argmax
𝑟

corr(𝑀(𝑟,𝜙 (𝑡 ),𝑧) (𝐶), ℎ(𝑡))

We then subtract 𝑟groove from our prior measurement of 𝑟tread at
the tread surface from Sec. 5.3 to compute tread depth.

Figure 9: Osprey was also evaluated on a passenger car. Os-
prey’s hardware is shown to be mounted in the tire well of
a 2019 Honda Odyssey.

7 FOREIGN OBJECT SENSING
This section describes our approach to locating and detecting for-
eign objects lodged in the tire. Our primary approach is to detect
and locate anomalies in the ISAR image that appear due to the
presence of foreign objects. We then study the shape, intensity,
and phase corresponding to these anomalies to classify the type of
foreign object.

7.1 Locating Foreign Objects
To locate foreign objects on the surface, Osprey relies on back-
ground subtraction to constantly monitor any new reflectors that
appear in the mmWave ISAR image. It then locates the (𝑟, 𝜙, 𝑧) loca-
tion of objects that appear in the ISAR image and remain persistent
when averaged across multiple frames. Given its high spatial reso-
lution, ISAR image captures as small as 3 mm on the tire’s surface,
which captures the vast majority of dangerous objects that may
impede a tire’s structural integrity.

An important challenge in detecting foreign objects deep in the
groove is that they may not reflect strongly under mmWave. Here,
Osprey relies on the presence of known metallic coded patterns in
the groove. Dangerous foreign objects made of metal will inevitably
interact with mmWave and make their presence known, even in the
groove by disrupting the shape of the code. However, even weaker
reflectors of mmWave (e.g. sharp stones or glass) that penetrate
into the tire via the groove are likely to wear out the metallic codes
in the process of damaging the tire. This manifests as bit errors in
the code when processed by Osprey’s algorithm in Sec. 6. Osprey
therefore treats bit errors as potential foreign objects and passes
on the received signals at the specific location within the groove to
the classification algorithm below to detect and classify the object
type.

7.2 Classifying Foreign Object Type
Osprey classifies object type by relying on both the magnitude
and the phase of the received signal at a specific (𝑟, 𝜙, 𝑧) location
as obtained from Eqn. 1. We rely on three specific properties of
the foreign object’s impact on radar signals: (1) The amplitude
of reflection (stronger for metallic objects); (2) The phase which
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captures object reflectivity; (3) The shape and size of the object as
it appears on the ISAR image. We choose a simple linear binary
class classifier using Gaussian Mixture Models, which achieved the
highest accuracy computed through cross-validation on the dataset
among different models compared. Sec. 9.5 presents the results from
an evaluation of our system.

8 IMPLEMENTATION AND EVALUATION
Hardware: We implement Osprey on commodity 77 GHz automo-
tive radar developed by Texas Instruments – the TI AWR1642. The
chip uses an FMCW chirp modulated between 77 GHz and 81 GHz
with maximum allowable bandwidth of 4 GHz. To provide maxi-
mum flexibility, we use the AWR1642BOOST evaluation board that
allows for quick integration with a processing pipeline and enables
easy debugging. We interface this board with the DCA1000EVM
FPGA board to collect and process raw I/Q samples from the radar
board in real-time. The maximum speed our system can support is
limited by the minimum allowed chirp periodicity time. Our system
is hardware limited to tire speeds of about 12 kmph, for a tire outer
radius of 33.5 cm. We are also limited in our ability to evaluate
by the maximum reliable rotation speed of the motor - 5.45 kmph.
However, with relaxed sampling rates of > 1 mm, higher speeds
can be supported (see Sec. 10).
Software: Our implementation of Osprey’s algorithm is written
in MATLAB. We assume that the tread pattern and the placement
of metallic codes on the surface, developed using Aluminum strips
as described in Sec. 6 (see Fig. 7), are known. The system outputs
the following: (1) The tread depth of the tire at each groove where
the corresponding codes are attached; (2) Detection and location of
foreign objects.
Evaluation: We evaluate Osprey on two distinct test-beds (see
Fig. 8, 9): (1) [Sec. 9.2-9.3 and 9.5] A mechanical rotational rig that
mimics rigs used to test tire performance. The rig uses a Nema 23
stepper motor with a microstepping driver that allows fine-grained
control of rotational angle and reliable speeds up to 5.45 kmph of
the tire. We use the rig for the bulk of our experiments primarily
due to safety reasons when experimenting with extreme tread wear
and to ensure fine-grained control of variables (e.g. speed, debris
depth, etc.). (2) [Sec. 9.4] We also present system performance on a
large passenger car (a 2019 Honda Odyssey). Across experiments,
we use the following models of tires: Falken Eurowinter HS449
and Bridgestone Blizzak LM001 – with diverse tread patterns to
show system generality. Further, across experiments, we consider
tread depths between 1.7 and 8.75 mm, ensuring diversity by adding
thin layers of rubber in the groove. We evaluate the system under
different types and amounts of debris, foreign objects, and tire
dynamics. Note that unless specified otherwise, error bars denote
first standard deviation.
Pipeline: Fig. 10 shows the entire pipeline for testing on rotation
rig. Based on the desired speed of rotation, the radar chirp config-
urations and motor signals are created and sent to DCA1000EVM
and motor controller respectively. AWR1642BOOST samples the
reflections, and DCA1000EVM streams the packets over Ethernet
to the host computer which runs the tread depth estimation algo-
rithm and foreign object detection and localization. Similarly, for
testing on car, we follow everything discussed above except the

Figure 10: Top view of Fig. 8. Block diagram showing the sig-
nal flow pipeline for tests performed on the rotation rig.

motor controller. Here, the driver is instructed to maintain a desired,
sufficiently uniform, slow speed. Streaming from DCA1000EVM
provides the option of connecting to the car’s computer and running
algorithms.
Ground Truth and Baseline: To obtain ground truth, we first
clear up the tire groove of any debris and use a digital Vernier
caliper. We reintroduce any debris prior to running Osprey. For
comparison in certain experiments (those involving debris), we also
present accuracy numbers of a LIDAR-based Bosch GLM40 sensor
as a baseline to demonstrate that the debris introduced impedes
light-based measurement.

9 RESULTS
This section evaluates Osprey under debris, tire dynamics, and
foreign objects. Note that besides Sec. 9.4, which evaluates vehicle
dynamics on a passenger car, all other sections are evaluated on
the mechanical rig for safety and repeatability.

9.1 Microbenchmark – Code Material
Method: In this microbenchmark experiment, we motivate our
choice of Aluminum foil for the design of Osprey spatial codes for
debris-resilient tread depth sensing. We place thin strips (1 mm
thin) of six different materials: Aluminium foil, paper, rubber, cloth,
plastic, and cardboard at distances of 29 cm directly below and
facing the mmWave radar. We then measure the average power of
the reflected signal per material across experiments.
Results: Fig. 11 plots the mean and standard deviation of the
reflected power across materials. Aluminum has a clear advantage
over other materials (a mean gain of ≈3 dB or equivalently, 2×
higher power). We therefore choose Aluminum strips for Osprey’s
design.

9.2 Tread Depth with Debris
Method: In this experiment, we evaluate the performance of Os-
prey when debris is placed in tire groove. We first vary the amount
of debris ranging from 3 mm to 8 mm thickness (34%-91% of tread
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Figure 11: mmWave reflectivity of
various materials

Figure 12: Tread Depth Error
vs. Debris Level

Figure 13: Tread Depth Error
vs. Debris Type

Figure 14: Tread Depth Error
vs. Tire Speed

Figure 15: Tread Depth Error
vs. Vehicle Vibrations

Figure 16: Tread Depth Error
vs. Terrain Type

depth covered). We add sawdust as debris in the groove. We note
readings from diverse trials in which codes are uncovered, partially
covered, and completely covered with sawdust. To validate ground
truth, we use a digital Vernier caliper. We additionally measure
the error of a Bosch GLM40 laser rangefinder. Next, we evaluate
Osprey with different types of commonly found debris: sawdust,
mud, snow, and tiny stones that can be lodged in the groove of the
tire.
Results: Fig. 12measures Osprey’s error in tread depth for different
levels of sawdust. We note that Osprey achieves a maximum error
of 1.53 mm for the maximum thickness of debris (8 mm), remaining
highly accurate with expected but small levels of degradation as
debris is added. We also note that the baseline LIDAR system per-
forms poorly under debris as expected with errors increasing from
3.8 mm to 8 mm as more debris is attached, essentially detecting
debris level rather than true tread depth.

Fig. 13 measures the performance of Osprey in terms of error
in tread depth for different types of debris. Observe that Osprey-
achieves amaximum tread depth error of 0.85mm, remaining highly
accurate with minimal degradation across different types of debris.
Among the different types of debris, we see that sawdust and mud
achieves the lowest performance (which is still 0.85 mm accurate).
While it is easy to see that a high density object like stone can block
the mmWave significantly, moist sawdust also attenuates mmWave
due to its moisture content and particle size [12].

9.3 Tread Depth vs. Tire Speed
Method: In this experiment, we measure the accuracy of tread
depth at different tire wear levels across different tire speeds. We
perform this experiment on the mechanical rig to ensure repeata-
bility and fine-grained control of the speed. We consider speeds of
0.62, 2.32 and 5.45 kmph of the tire. Strictly, the speed of interest is
the rotational speed, but for convenience we report in kmph as well.
We vary the tread depths by adding rubber in the groove of a Falken
Eurowinter HS449 tire. The unaltered tread depth is 8.75 mm. We
vary it to two other levels - one which is around the legal limit (1.7
mm) and another above the legal limit for passenger cars (5 mm).
Results: Fig. 14 shows that Osprey’s performance in terms of tread
depth has a maximum error of 1.5 mm across tire speeds. On the
other hand, as the speed increases, we see a general increase in
error averaged across true tread depths. While our radar adapts
the chirp periodicity parameter such that it always samples the tire
surface at a fixed spatial sampling rate of 1 mm to ensure similar
Inverse SAR image quality is maintained across different speeds
(see Sec. 10), small sampling offsets result in this increasing error
trend. Despite this trend, we note that the error is small irrespective
of the true tread depth.

9.4 Impact of Vehicle Dynamics on Osprey
Method: In this section, we evaluate the performance of Osprey
on a passenger car with the mmWave radar attached to the tire
well of the car as shown in Fig. 9. We once again measure error
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Figure 17: Foreign Object Localization Error

in tread depth by varying two distinct parameters: (1) First, we
consider different levels of vibrations of the car by driving it on
three different bumpy surfaces. These correspondingly induce low,
medium, and high levels of vibrations. (2) Second, we consider the
performance of Osprey when picking up natural debris on the road
by driving the Osprey-enabled vehicle on a paved flat surface with
no debris, a stony surface, a wet surface mimicking road after rain,
and a slushy surface created by mixing snow and mud mimicking
road after snowfall.
Results: Fig. 15 shows that the tread depth estimation in Osprey
has average error of 0.21, 0.68, and 0.73 mm respectively for low,
medium, and high levels of vibration. This demonstrates Osprey’s
robustness to road-related vibrations and changes in vehicle sus-
pension.

Next, Fig. 16 shows that average tread depth estimation error
in Osprey is 0.21, 0.68, 0.52, and 0.19 mm respectively for paved
flat, stony, wet and slushy surfaces. We note that the maximum
error is 0.68 mm, showing that our system is robust to different
kinds of terrain. We note that interestingly, our experiments also
resulted in the mmWave radar itself being splattered with debris
as the vehicle moved. However, our system remains robust to this
effect. In contrast, a LIDAR system placed in the tire well reported
error messages and refused to output range readings due to debris
that obstructed the LIDAR’s light sensor itself when driven on all
the above types of terrains.

9.5 Sensing Foreign Objects
Method: In this section, we measure Osprey’s accuracy in detect-
ing and locating foreign objects placed in the groove of a tire. Note
that we assume that grooves have Osprey spatial codes attached
to them according to a known specification. We consider the fol-
lowing types of objects – nail, stone, sawdust, and ice cubes as
foreign objects embedded in the groove of the tire. The sizes of the
foreign object range from 5 mm to 25 mm. We run 50 trials with
these objects in the tire at constant tire speed. Across these trials
the object type and its location are varied.
Results: Fig. 17 depicts the CDF of the absolute error in estimate
of the foreign object’s reported location from its true location. We
note that this error in the location is 17 mm, comparable to the

size of the foreign objects themselves and more than sufficiently
accurate to visually inspect the tire and find the objects.

Next, we trained multiple classifiers to classify the foreign object
into 2 categories: harmful (metallic objects) and non-harmful (the
rest) using the features described in Sec. 7. We choose the Gaussian
Mixture Model which achieves the highest classification accuracy
of 91.67% between metallic and non-metallic foreign objects.

10 DISCUSSION
Speed: We show that our system can operate at tire speeds up
to 5.45 kmph owing to the maximum reliable speed supported by
our motor. Moreover, as explained in Sec. 8, we adapt the chirp
periodicity for different speeds. As speed increases, we lower the
chirp periodicity. The minimum chirp periodicity supported by the
radar hardware limits maximum speed supported by our system to
12 kmph. In order to support higher speeds, we either need a hard-
ware which can support lower chirp periodicity or we can set the
chirp periodicity to be the minimum supported by the system and
trade off on spatial sampling. This means that instead of spatially
sampling the surface of tire at 1 mm (as mentioned in Sec. 8), we
relax it to higher values and sample coarsely. Higher spatial sam-
pling values can lead to errors and potentially aliasing effects. But,
we note that natural tire wear occurs at relatively slow timescales.
Our system, although operating at slow speeds, provides a design
which enables obtaining periodic measurements continuously as
and when vehicles move slowly. This continues to be very infor-
mative and is reliable and convenient compared to manual sensing
approaches.

For the purposes of this work, we assume we know the speed of
rotation.We use this speed information to choose a chirp periodicity.
The speed information can be obtained from the computer in the
vehicle or from other sensors that can be mounted on the tire.
Almost similar to the principle of an optical encoder, we can reuse
the spatial codes in the grooves as an encoder to infer the speed
through radar processing.

Another assumption we make is that the speed is sufficiently
uniform. This is important because we do not have the ability to
configure the chirp periodicity at very fine time intervals as and
when the measured speed changes. Hardware with such capabilities
can potentially deal with non-uniform speeds.
Debris-Resilient Metallic Structures: In our system, we lay
the metallic structures in the grooves. Note that grooves don’t
directly come in contact with the terrain. Unlike in-tread sensors,
which have sensors embedded in the tread during manufacturing
(requiring changes to assembly lines), we envision these structures
to be placed in the grooves post-manufacturing.

Because our metallic structures are thin paper-like Aluminium
foils, if they come in contact with a stone or a sharp object, they
can get peeled off. This is possible to detect by monitoring the
spatial code and observing changes. Once peeled, the spatial code
has to replaced. Adding metallic structures could also affect some
functionalities of the groove such as ability to channel water.

To address these deficiencies, we believe it is possible to reuse
existing steel belts in tires and their pattern as a spatial code instead.
These belts are located just below the grooves (see Fig. 2). Tread
depths calculated with respect to these will have a small and fixed
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offset which can be accounted for. We believe this is an important
topic for future work to explore.
Impact of Tire Geometry: We evaluate our system on two dif-
ferent passenger car tires. Our system uses information about the
tread patterns and layout of spatial codes. Such information can
be obtained from 3D models of tires that can be provided by man-
ufacturers during purchase. In addition, our system needs to be
re-calibrated when tires are replaced during service.

While both tires had different tread patterns, they had a groove
running through the circumference of the tire. This allowed us to
lay out our codes along the azimuth. These type of grooves are
commonplace as they are essential for channeling water [51]. We
leave it for future work to address other types of tread and groove
structures.
Impact of Debris on Radar: While we focus on road debris get-
ting accumulated in the grooves, debris accumulation on radar
could affect measurements. However, mmWave is shown to prop-
agate through dust and other adverse atmospheric conditions [6].
We also notice that our system remains robust when we observed
debris splattered on the radar in Sec. 9.4.
Cost of System: Our system is based on TI AWR1642 mmWave
sensor. The cost of this IC is <$40 [41]. We note that this cost-
overhead is insignificant for trucking companies, where the need
for tire replacement alerts far outvalue system cost [16].

11 RELATEDWORK
Past solutions explored for tire sensing are very diverse and use
different sensing modalities, broadly grouped in the following cate-
gories.
Manual and Indirect Tread Sensing: The most common ap-
proach to tread depth measurement is manual – using a coin or
ruler to measure tread depth. However, this approach requires hu-
man effort, doesn’t provide continuous measurements, and is prone
to error. Our approach instead seeks to provide a continuous and
accurate mechanism to measure tread depth. [4, 11] uses tire pres-
sure from TPMS and [28] uses in-tread temperature and pressure
sensors to map indirectly to tread depth. While the methods have
the advantage of reusing preexisting sensors, they are known to be
crude and only good enough to alert that a tire change is needed
[11].
In-Tread and Off-Tread Sensors: There has been a lot of activ-
ity to develop in-tread sensors exclusively for tread depth based
on RFID [19, 33], 2.4GHz [46], and Surface Acoustic Waves [40].
Embedding these sensors would require manufacturing lines to
leave a tread lug empty, manufacture the rest of the tire, embed
the sensor in a lug outside manufacturing lines, and then cure the
lug with the rest of the tire. This could decrease the efficiency of
manufacturing lines, increase the time cost, and possibly negatively
affect the economics of making a tire.

In cases where tread depth is measured occasionally but highly
accurately over a specific region on tread, vehicles drive over laser
scanners on the ground [25, 48]. There are other solutions in which
laser scanners are installed in manholes on roads and scan for tread
depth on all tires which go by [38]. Unfortunately, such solutions
require the tire to be free of debris in the groove as they can cor-
rupt measurements. Radio based off-tread solutions [3] lay an active

transmitter and a receiver sensor array over which the tire is driven.
Received signal changes with any change in electric medium (ca-
pacitance) due to wear. Similar to other off-tread solutions, this
too does not provide an infrastructure which allows to obtain tire
wear in a periodic continuous fashion - which is important from the
perspective of safety and performance. Our objective is to obtain
continuous, robust to debris, accurate tread depth measurement.
mmWave Localization and Sensing: There has been rich prior
work on using mmWave radios for sensing. Commercial appli-
cations of mmWave sensing include full-body scanning [22] and
detecting automobile collisions [23, 24]. There has also been re-
cent past work on using commodity mmWave radars for varied
applications, such as: gesture-based interfaces [26, 49], object track-
ing [17], scene imaging [14], and beyond. Several past solutions
have also sought to extendmmWave communication radios for sens-
ing, e.g. for accurate localization [1, 7, 13] and sensing [35, 53, 54].
However, in our context, insufficient range resolution and debris
offer challenges. Osprey complements this literature and develops
a super-resolution algorithm specifically for the tire wear sensing
context and achieves sub-mm accuracy in tread depth. Osprey is
most closely related to recent work on mmWave barcodes [20, 21]
used for product identification and more broadly with literature on
chipless RFIDs and backscatter [29, 30] which require no electron-
ics. The objectives of these – no electronics and tag identification
in non line of sight conditions – are similar to our requirements.
Osprey builds on and complements this literature by designing
spatial codes and a decoding algorithm for the unique problem of
tire sensing amidst debris and tire dynamics.

12 CONCLUSION
This paper presents Osprey, the first mmWave tire wear sensing
system that measures accurate tread wear continuously even in
the presence of debris. Osprey achieves this by imaging the tire’s
surface using a mmWave radar system at a resolution of sub-mm,
an order of magnitude over its advertised resolution. We achieve
this through a super-resolution Inverse Synthetic Aperture Radar
algorithm that exploits the natural rotation of the tire. We further
devise mechanisms to eliminate the impact of debris lodged in
the tire when measuring tread depth. We demonstrate how our
system detects and locates unsafe foreign objects lodged in the tire.
A detailed evaluation of Osprey on commercial car and tire rotation
rig reveals 0.68 mm error in tread depth estimation, 1.7 cm error
in locating and 92% accuracy in detecting harmful foreign objects.
While our current approach requires adding metallic structures in
the groove, future work will explore leveraging the diversity of
materials already within the tire to filter out debris. We will further
explore abrasion of other surfaces beyond a tire, such as paint on
aircraft or anti-fouling systems in ships.
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